EFANNA : An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on kNN Graph

نویسندگان

  • Cong Fu
  • Deng Cai
چکیده

Approximate nearest neighbor (ANN) search is a fundamental problem in many areas of data mining, machine learning and computer vision. The performance of traditional hierarchical structure (tree) based methods decreases as the dimensionality of data grows, while hashing based methods usually lack efficiency in practice. Recently, the graph based methods have drawn considerable attention. The main idea is that a neighbor of a neighbor is also likely to be a neighbor, which we refer as NN-expansion. These methods construct a k-nearest neighbor (kNN) graph offline. And at online search stage, these methods find candidate neighbors of a query point in some way (e.g., random selection), and then check the neighbors of these candidate neighbors for closer ones iteratively. Despite some promising results, there are mainly two problems with these approaches: 1) These approaches tend to converge to local optima. 2) Constructing a kNN graph is time consuming. We find that these two problems can be nicely solved when we provide a good initialization for NN-expansion. In this paper, we propose EFANNA, an extremely fast approximate nearest neighbor search algorithm based on kNN Graph. Efanna nicely combines the advantages of hierarchical structure based methods and nearest-neighbor-graph based methods. Extensive experiments have shown that EFANNA outperforms the state-of-art algorithms both on approximate nearest neighbor search and approximate nearest neighbor graph construction. To the best of our knowledge, EFANNA is the fastest algorithm so far both on approximate nearest neighbor graph construction and approximate nearest neighbor search. A library EFANNA based on this research is released on Github.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Software Cost Estimation by a New Hybrid Model of Particle Swarm Optimization and K-Nearest Neighbor Algorithms

A successful software should be finalized with determined and predetermined cost and time. Software is a production which its approximate cost is expert workforce and professionals. The most important and approximate software cost estimation (SCE) is related to the trained workforce. Creative nature of software projects and its abstract nature make extremely cost and time of projects difficult ...

متن کامل

Fast Large-Scale Approximate Graph Construction for NLP

Many natural language processing problems involve constructing large nearest-neighbor graphs. We propose a system called FLAG to construct such graphs approximately from large data sets. To handle the large amount of data, our algorithm maintains approximate counts based on sketching algorithms. To find the approximate nearest neighbors, our algorithm pairs a new distributed online-PMI algorith...

متن کامل

Efficient k-nearest neighbor searches for multi-source forest attribute mapping

In this study, we explore the utility of data structures that facilitate efficient nearest neighbor searches for application in multi-source forest attribute prediction. Our trials suggest that the kd-tree in combination with exact search algorithms can greatly reduce nearest neighbor search time. Further, given our trial data, we found that enormous gain in search time efficiency, afforded by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1609.07228  شماره 

صفحات  -

تاریخ انتشار 2016